Homework 2 Solutions

Due: Wednesday, February 11

Problem 2.56

From past experiences a stockbroker believes that under present economic conditions a customer will invest in tax-free bonds with a probability of 0.6 , will invest in mutual funds with a probability of 0.3 , and will invest in both tax-free bonds and mutual funds with a probability of 0.15 . At this time, find the probability that a customer will invest
(a) in either tax-free bonds or mutual funds but not both;
(b) in neither tax-free bonds nor mutual funds.

Solution: Consider the events
B : customer invests in tax-free bonds,
M : customer invests in mutual funds.
Then:
(a) The event is represented in the Venn diagram below by the shaded area. Its probability

$$
\begin{aligned}
P\left(\left(B \cap M^{\prime}\right) \cup\left(M \cap B^{\prime}\right)\right) & =P\left(B \cap M^{\prime}\right)+P\left(M \cap B^{\prime}\right) \\
& =(P(B)-P(B \cap M))+(P(M)-P(B \cap M)) \\
& =P(B)+P(M)-2 P(B \cap M)=0.6+0.3-2 \cdot 0.15=0.6 .
\end{aligned}
$$

(b) $P\left(B^{\prime} \cap M^{\prime}\right)=1-P(B \cup M)$. Since $P(B \cup M)=P(B)+P(M)-P(B \cap M)=$ $0.6+0.3-0.15=0.75$, we have $P\left(B^{\prime} \cap M^{\prime}\right)=1-0.75=0.25$.

Problem 2.60

A pair of fair dice is tossed. Find the probability of getting
(a) a total of 8 ;
(b) at most a total of 5 .

Solution:

(a) The sample space contains $6 \cdot 6=36$ equally likely outcomes. The outcomes such that the numbers on the dice add to 8 are:

$$
(2,6),(3,5),(4,4),(5,3),(6,2)
$$

and there are 5 of them. Hence the probability of obtaining a total of 8 is then $5 / 36$.
(b) The elements of the sample space totalling at most 5 are:

$$
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)
$$

There are ten of them, hence the probability of obtaining at most 5 is $10 / 36=5 / 18$.

Problem 2.78

A class in advanced physics is comprised of 10 juniors, 30 seniors, and 10 graduate students. The final grades show that 3 of the juniors, 10 of the seniors, and 5 of the graduate students received an A for the course. If a student is chosen at random from this class and is found to have earned an A, what is the probability that he or she is a senior?

Solution: Let N stand for the event that the student is a senior, and A for the event that he or she earned an A. Then

$$
P(A \cap N)=10 / 50 \quad P(A)=\frac{3+10+5}{50}=18 / 50
$$

and

$$
P(N \mid A)=\frac{P(A \cap N)}{P(A)}=\frac{10 / 50}{18 / 50}=10 / 18=5 / 9
$$

We could get the same immediately as

$$
P(N \mid A)=\frac{10}{3+10+5}=10 / 18=5 / 9
$$

Problem 2.86

For married couples living in a certain suburb, the probability that the husband will vote on a bond referendum is 0.21 , the probability that his wife will vote in the referendum is 0.28 , and the probability that both the husband and wife will vote is 0.15 . What is the probability that
(a) at least one member of a married couple will vote?
(b) a wife will vote, given that her husband will vote?
(c) a husband will vote, given that his wife does not vote?

Solution: Consider the events:
H : the husband will vote on the bond referendum,
W : the wife will vote on the bond referendum.
Then $P(H)=0.21, P(W)=0.28$, and $P(H \cap W)=0.15$.
(a) $P(H \cup W)=P(H)+P(W)-P(H \cap W)=0.21+0.28-0.15=0.34$.
(b) $P(W \mid H)=\frac{P(H \cap W)}{P(H)}=\frac{0.15}{0.21}=\frac{5}{7}$.
(c) $P\left(H \mid W^{\prime}\right)=\frac{P\left(H \cap W^{\prime}\right)}{P\left(W^{\prime}\right)}=\frac{P(H)-P(H \cap W)}{1-P(W)}=\frac{0.06}{0.72}=\frac{1}{12}$.

Problem 2.88

The probability that the head of a household is home when a telemarketing representative calls is 0.5 . Given that the head of the house is home, the probability that goods will be bought from the company is 0.3 . Find the probability that the head of the house is home and goods being bought from the company.

Solution: Define events
H : head of household is home,
G : goods are bought from the company.
Then

$$
P(H \cap G)=P(H) P(G \mid H)=0.5 \cdot 0.3=0.15
$$

Problem 2.82

A manufacturer of flu vaccine is concerned about the quality of its flu serum. Batches of serum are processed by three different departments having rejection rates of $0.10,0.08$, and 0.12 , respectively. The inspections by the three departments are sequential and independent.
(a) What is the probability that a batch of serum survives the first departmental inspection but is rejected by the second department?
(b) What is the probability that a batch of serum is rejected by the third department?

Solution: Let D_{1}, D_{2}, D_{3} be the events that the serum would be rejected by departments $1,2,3$ respectively. Then $P\left(D_{1}\right)=0.10, P\left(D_{2}\right)=0.08, P\left(D_{3}\right)=0.12$, and all three events are independent.
(a) $P\left(D_{1}^{\prime} \cap D_{2}\right)=\left(1-P\left(D_{1}\right)\right) P\left(D_{2}\right)=0.90 \cdot 0.08=0.072$.
(b) $P\left(D_{1}^{\prime} \cap D_{2}^{\prime} \cap D_{3}\right)=\left(1-P\left(D_{1}\right)\right)\left(1-P\left(D_{2}\right)\right) P\left(D_{3}\right)=0.90 \cdot 0.92 \cdot 0.12 \approx 0.099$.

Problem 2.98 (bonus)

Suppose the diagram of an electrical system is given in the figure below. What is the probability that the system works? Assume the components fail independently.

Solution: Let A, B, C, and D denote the events that the respective components work. Then

$$
P(A)=0.95 \quad P(B)=0.7 \quad P(C)=0.8 \quad P(D)=0.9
$$

and all the events are independent. The system works (event W) if both components A and D work, and at least one of the components B or C works. That is $W=A \cap(B \cup C) \cap D$ and

$$
\begin{aligned}
P(W) & =P(A \cap(B \cup C) \cap D) \\
& =P(A) P(B \cup C) P(D) \\
& =P(A)\left(1-P\left(B^{\prime} \cap C^{\prime}\right)\right) P(D) \\
& =P(A)\left(1-P\left(B^{\prime}\right) P\left(C^{\prime}\right)\right) P(D) \\
& =0.95(1-0.3 \cdot 0.2) 0.9 \approx 0.8037
\end{aligned}
$$

